Irreversible Cartesian Diver

Ashutosh Rai (Institute of Physics, SAS, Bratislava)

IYPT preparatory seminar

(Irreversible) Cartesian Diver: the phenomenon

- **Diver**: prepared filled with some water and some air.
- Diver Floats: when released into water container.
- **Diver Sinks**: on increasing pressure inside the container.
- ▶ 1. Diver Bounce back: on removing the (excess) pressure.
 - 2. Diver remains sunk: on removing the (excess) pressure.

The physical principles governing Cartesian Diver

Archimedes' principle: Any object, totally or partially immersed in a fluid or liquid, is buoyed up by a force equal to the weight of the fluid displaced by the object.

Pascal's principle

A pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.

Basic Hydraulic Principles	💿 💿
Pascal's Law	
	FORCE
	Increase
	Decrease
	"Pressure applied to a confined fluid at any point is transmitted
4 +	undiminished throughout the fluid in all directions and acts upon every
	part of the confining vessel at right
÷ +	equally upon equal areas."
is 2005-2017 Sehaera Limited	

Cartesian Diver: first we note that:

- Diver has non homogeneous density:

 of her/his body,
 of water inside the body, and
 density of air inside the body.

 Let average density be ρ_D.
- 2. Diver has a fixed volume (V_D) , and therefore a limiting value of Buoyancy: $F_B^{max} = \rho_{water} V_D g$.
- 3. The average density of the Diver ρ_D is a variable quantity (we will see how !).

Cartesian Diver: what is going on?

.

- Initially, $F_B^i = \rho_D^i V_D g$, so diver floats.
- When pressure is increased, volume of air inside the Diver decreases and more water fills into the Diver. As a result the average density (so weight) of Diver increases to a value greater than F^{max}_B and the Diver starts sinking, i.e., when

$$ho_D V_D g > F_B^{max}$$

As the Diver sinks, pressure further increases due to increasing depth h, and as a result the air inside the Diver is compressed further and even more water fills into the Diver. Weight of Diver increases, and he sinks faster.

Cartesian Diver: what is going on?

- ▶ If the excess pressure applied to make the Diver sink is removed quickly, the phenomenon is reversible. I.e., the air inside the Diver expands, s/he loses some water, and therefore weight of the Diver reduces below F_B^{max} . The Diver starts moving upwards and after sometime floats on the surface again.
- However, if the Diver sinks beyond a certain critical depth h ≥ h_{critical}, even after removing the excess pressure the motion is irreversible, and s/he sinks to the bottom. Why? How to find h_{critical} !

Irreversible Cartesian Diver

- We noted before that as the Diver sinks deeper, also the non-external static water pressure increases due to the depth: P_h = ρ_{water} gh.
- We can derive weight of the Diver as a function of non-external static pressure ρ_D(h) V_Dg.
- Then, $\rho_D(h_{critical}) V_D g = F_B^{max}$.
- We can solve for $h_{critical}$.
- ► If the Diver sinks to a depth h ≥ h_{critical}, even the maximum possible Buoyancy force is not enough to propel her/him upwards; s/he sinks further!

Irreversible Cartesian Diver: Realistic models and Experiments

- We measure density of water, body of the Diver, and mass of air inside the Diver.
- ▶ We measure volume of the Diver.
- We derive average density (and thus weight) of the Diver as a function pressure.
- ▶ Then we compute $h_{critical}$.

THANK YOU